
Unanimous 2PC: simple, fast and fault
tolerant distributed transactions

Chris Jensen CH, Heidi Howard CA, Antonios Katsarakis H, Richard Mortier C
CUniversity of Cambridge, HHuawei Research, AAzure Research

,

Motivation
2-Phase-Commit (2PC) is fast but not fault-tolerant, while
distributed commit protocols are fault-tolerant but slow.

Can we make 2PC both fast and fault tolerant? Yes

Protocol

Optimistic Execution Phase
U2PC transactions are first executed optimistically. Reads
are performed at any replica in the shard, and writes are
buffered until after commit.

Distributed Commit Phase
The commit protocol must validate that the optimistic
execution was valid. The coordinator broadcasts Lock to
all replicas. Then acts according to the following:

Message Threshold Action
Lock-Ack all replicas in all shards commit
Lock-Nack any replica in any shard Pre-Abort-Unlock
Lock-Nack all replicas in any shard abort

Recovery
To recover stop at least one replica per shard and read its
lock state. Then for each transaction:

any Commit commit
any Abort abort
all Lock commit
any not Lock abort

Performance

Cluster Messages RTT
Size Read Write Commit Abort

FaRM f+1 5+3f 2 3,4 1,2
FastPaxos 2f+1 3+6f 3+6f 1,2 1,2
U2PC f+1 3+3f 2,3+3f¹ 1 1,2

¹Read-only transactions have a fast path of 2 messages.

U2PC scales better than FastPaxos based approaches such
as TAPIR or Meerkat with lower latency than FaRM.
However for multi-shard read-write transactions U2PC has
higher overhead than FaRM.

Theory

Similarly to how FaRM applies FlexiblePaxos to
PaxosCommit to reduce its shard overhead and improve
scalability, U2PC applies FastFlexiblePaxos to Meerkat.

github.com/cjen1/u2pc-tla PaPoC 2024 chris.jensen@cl.cam.ac.uk

https://github.com/Cjen1/u2pc-tla/
mailto:chris.jensen@cl.cam.ac.uk

	Motivation
	Protocol
	Optimistic Execution Phase
	Distributed Commit Phase

	Recovery
	Performance
	Theory

